まとめサイト速報+ 2chまとめのまとめ ワロタあんてな news人 カオスちゃんねる

地面にちっちゃい円を描くじゃん、同時にめっちゃデカい円も描いてるの?

2016年09月09日:20:00

  • このエントリーをはてなブックマークに追加

コメント( 123 )

en


1: 以下、\(^o^)/でVIPがお送りします 2016/09/09(金) 07:25:31.590 ID:dsGxa4400
同時にめっちゃでかい円も描いてるの?

引用元: 地面にめっちゃちっちゃい円を描くじゃん







6: 以下、\(^o^)/でVIPがお送りします 2016/09/09(金) 07:27:10.961 ID:aUpWV19Sd
なるほどな
意味はわかる

7: 以下、\(^o^)/でVIPがお送りします 2016/09/09(金) 07:27:28.083 ID:P4tYsKkY0
地球の反対側にもうひとつ中心があるってことか?

9: 以下、\(^o^)/でVIPがお送りします 2016/09/09(金) 07:30:12.265 ID:sbV46Q/60
発想は面白いと思う

10: 以下、\(^o^)/でVIPがお送りします 2016/09/09(金) 07:31:22.349 ID:NDqm3vwEM
理系的発想だな

11: 以下、\(^o^)/でVIPがお送りします 2016/09/09(金) 07:32:40.200 ID:IcD0VjrX0
中と外の概念

12: 以下、\(^o^)/でVIPがお送りします 2016/09/09(金) 07:32:59.642 ID:4uLn0fAvd
駅のアナウンス「黄色い線の内側に~」
>>1「こっちも内側!!」グモッチュイーン

15: 以下、\(^o^)/でVIPがお送りします 2016/09/09(金) 07:33:46.072 ID:JHH9ANyMa
これは素晴らしい発想だ

28: 以下、\(^o^)/でVIPがお送りします 2016/09/09(金) 07:49:50.761 ID:G29V92Zga
この外側を大きな円と言えるだろうか、いや言えない
gnn5

30: 以下、\(^o^)/でVIPがお送りします 2016/09/09(金) 07:52:43.004 ID:sE6DUQdT0
>>28
分解したらこうなるよね
gnn7

31: 以下、\(^o^)/でVIPがお送りします 2016/09/09(金) 07:53:49.675 ID:G29V92Zga
うん

18: 以下、\(^o^)/でVIPがお送りします 2016/09/09(金) 07:37:45.569 ID:m2qE9/W0r
赤道の円の中心は北極と南極にあると思ってるのか
地球の中心がその円の中心だろ

23: 以下、\(^o^)/でVIPがお送りします 2016/09/09(金) 07:41:54.806 ID:IB10gHT60
赤道に沿って描かないと円じゃなくね

25: 以下、\(^o^)/でVIPがお送りします 2016/09/09(金) 07:45:50.596 ID:egY65+Uq0
仮に赤道に真っ直ぐ線引いて円描いたとしても面積は北半球か南半球の面積そのままじゃなくて地球の断面図だからな
この場合も円周と面積は同じか

27: 以下、\(^o^)/でVIPがお送りします 2016/09/09(金) 07:49:11.717 ID:N2rZoPj9M
なんか違うけど合ってる

35: 以下、\(^o^)/でVIPがお送りします 2016/09/09(金) 08:16:07.305 ID:M4z6tc3Qd
意味わからないんだけど誰か説明して

37: 以下、\(^o^)/でVIPがお送りします 2016/09/09(金) 08:18:44.707 ID:egY65+Uq0
>>35
北極点に小さい円を描いてそれを地球を覆うような形で南に広げていく
南極点についたら最初と同じような円ができてる

44: 以下、\(^o^)/でVIPがお送りします 2016/09/09(金) 08:25:33.057 ID:M4z6tc3Qd
>>37
広げるってところが意味わからんというか想像できない

40: 以下、\(^o^)/でVIPがお送りします 2016/09/09(金) 08:21:52.438 ID:AN59o5E60
>>35
こういう風の縁を作った時にAを中心とする円とBを中心とする円があるって事じゃね
gnnr

44: 以下、\(^o^)/でVIPがお送りします 2016/09/09(金) 08:25:33.057 ID:M4z6tc3Qd
>>40
それの場合どっちがちっちゃい円なの?

52: 以下、\(^o^)/でVIPがお送りします 2016/09/09(金) 08:35:04.937 ID:AN59o5E60
>>44
Aを中心とする方

54: 以下、\(^o^)/でVIPがお送りします 2016/09/09(金) 08:35:32.346 ID:M4z6tc3Qd
>>52
表面積かな

42: 以下、\(^o^)/でVIPがお送りします 2016/09/09(金) 08:22:51.669 ID:P4tYsKkY0
>>35
地面に小さい円を描いたらみんなそれを円だって認識するじゃん

円って本来は平面図形だから、球の一部に描かれたそれは円ではない
とすることも出来るはずなのに、円だと

であればその円は、その小さい円の中心の
地球の反対側にある点を中心とした大きな円である、ということも出来るはずだ

という詭弁

44: 以下、\(^o^)/でVIPがお送りします 2016/09/09(金) 08:25:33.057 ID:M4z6tc3Qd
>>42
大きくなる理由がわからん

47: 以下、\(^o^)/でVIPがお送りします 2016/09/09(金) 08:29:24.427 ID:P4tYsKkY0
>>44
円が平面でなく球面でもよい、という前提であれば
ある地点に描いた半径10cmの円は
反対から見れば半径4万km-10cmの円であると言える、という話

もちろん、半径が違うのに円周が同じになってしまうから
円としての性質が成立しないんで、意味のない詭弁だ

53: 以下、\(^o^)/でVIPがお送りします 2016/09/09(金) 08:35:07.045 ID:M4z6tc3Qd
>>47
表面積が小さい円と大きい円ができるってこと?

36: 以下、\(^o^)/でVIPがお送りします 2016/09/09(金) 08:16:34.798 ID:10GnGidha
理解は出来るけど説明難しい

39: 以下、\(^o^)/でVIPがお送りします 2016/09/09(金) 08:21:38.041 ID:G29V92Zga
それって平面的に見た時の話じゃね
地球は立体なんだしイマイチ納得できんな

41: 以下、\(^o^)/でVIPがお送りします 2016/09/09(金) 08:22:37.706 ID:72CkzKE00
数学において、円(えん)とは、平面(2次元ユークリッド空間)上の、ある点 O からの距離が等しい点の集合でできる曲線のことをいう。
この点 O を円の中心と呼ぶ。円には、その中心が1つあり、また1つに限る。

平面とは見なせないんじゃないか?

48: 以下、\(^o^)/でVIPがお送りします 2016/09/09(金) 08:29:34.982 ID:/02YCuwL0
球に描かれても円じゃね?
球の面に沿って考える必要はないんだから
gno4

50: 以下、\(^o^)/でVIPがお送りします 2016/09/09(金) 08:31:13.796 ID:egY65+Uq0
宇宙から見たら地球は立体だけど地球に立ってたら平面に感じるからそっちの感覚でしょ

55: 以下、\(^o^)/でVIPがお送りします 2016/09/09(金) 08:36:26.235 ID:AN59o5E60
この青線の長さは等しいので広げると円ってことかな
gno8

56: 以下、\(^o^)/でVIPがお送りします 2016/09/09(金) 08:40:10.847 ID:M4z6tc3Qd
>>55
やはり表面積か

57: 以下、\(^o^)/でVIPがお送りします 2016/09/09(金) 08:42:28.718 ID:IK9+fBjQ0
円をこうだとして普通に考えれば変わらないよな
gnoc

58: 以下、\(^o^)/でVIPがお送りします 2016/09/09(金) 08:44:45.937 ID:M4z6tc3Qd
>>57
変わらないね
上で言われてるのは球であって円ではないね
詭弁でもなんでもないので算数からやり直してほしいと思いました

59: 以下、\(^o^)/でVIPがお送りします 2016/09/09(金) 08:51:09.542 ID:P5unX3C4p
ボールに円を描いた時にできる「円」は
ボールの表面と考えてるやつとボールの断面と考えてるやつがいて、
どちらも理解しあえない感じ
世界平和は地球が丸い限りむりだわ






  • このエントリーをはてなブックマークに追加
地面にちっちゃい円を描くじゃん、同時にめっちゃデカい円も描いてるの?

この記事が気に入ったら
イイね!しよう

不思議.netの最新記事をお届けします

おススメ記事ピックアップ(外部)

おススメサイトの最新記事

コメント

1  不思議な名無しさん :2016年09月09日 20:08 ID:3ivV.dlA0*
森博嗣懐かしいなあ笑
2  不思議な名無しさん :2016年09月09日 20:18 ID:yo6thnM80*
宇宙視点から小さい円を描いたら地上視点では大きい円みたいな話だと思った(笑)
3  不思議な名無しさん :2016年09月09日 20:23 ID:XveoIJJU0*
昔、あの考えでチョーク1本で大男を円の外に出した事があったな。そしたら怒られたねん。
4  不思議な名無しさん :2016年09月09日 20:27 ID:q1qwY9v00*
非ユーグリッド幾何学の世界なら議論できるのにね。
延長すると交わる平行線とか、三角形の内角の和が180度じゃない世界。
5  不思議な名無しさん :2016年09月09日 20:33 ID:mRH8IMr.0*
そう詭弁、詭弁というほど屁理屈でもないと思うがな。
この円周は、描いた人の近くの点から球面上で等距離にある点の集合であると同時に、地球の反対側の点からも球面上で等距離にある点の集合だからな。
まあ、>>59 が纏めてくれた。

>>47
半径4万km-10cmでなくて2万km-10cmだね。
6  不思議な名無しさん :2016年09月09日 20:40 ID:QdLVA.be0*
何言ってんだコイツ?
7  不思議な名無しさん :2016年09月09日 20:51 ID:gbtbRTnK0*
空間が曲がって球形にループしてるとしたらそういうことになるのだろうか
8  不思議な名無しさん :2016年09月09日 20:56 ID:lKtLVi480*
魔方陣グルグル思い出した
9  不思議な名無しさん :2016年09月09日 20:56 ID:cYqvKxmB0*
解説すら意味不明なんだが……円は何処から見ても平面図形だろ?
10  不思議な名無しさん :2016年09月09日 20:58 ID:YvOcven80*
こんなん別に平面の紙に描いたって一緒やんけ
11  不思議な名無しさん :2016年09月09日 20:58 ID:71ghj5jv0*
俺も魔法陣グルグル思い出した
12  不思議な名無しさん :2016年09月09日 20:59 ID:c2bs7mB70*
グルグルだよな
後まどマギもある
13  不思議な名無しさん :2016年09月09日 21:08 ID:ptCB70WT0*
円って二次元なんじゃねーの?

三次元で考えるのって理解できないけど発想は面白い
14  不思議な名無しさん :2016年09月09日 21:15 ID:x.Agd8RK0*
面白い発想だ
こういうのが理解できない人もいるんだねぇ
15  不思議な名無しさん :2016年09月09日 21:20 ID:H84CmZs90*
魔法陣グルグルやんけ
16  不思議な名無しさん :2016年09月09日 21:25 ID:X2KhcBh40*
※1
それしか思いつかんよね
笑わない数学者だっけ
17  不思議な名無しさん :2016年09月09日 21:27 ID:.A8rAPL10*
地平線(水平線)が実は水平じゃないって発想を拡大解釈すれば言えるね
小さい円だって究極的に見れば僅かに球形
なら反対側にできた円も究極的に見れば僅かに平面に近いと考える事も可能
18  不思議な名無しさん :2016年09月09日 21:43 ID:uuz89Xul0*
数学嫌いな俺氏、なんの話をしてるんですかね?
19  不思議な名無しさん :2016年09月09日 21:59 ID:uPHKY.1B0*
これだったら、地表の頂点と演習で作られる三角錐でもいいんだよね
球面が地表に沿ってなれければいけない理由もないし、面積は無限通りだね。
円の定義を好き勝手に変えて、何の利点があるんだろ?
20  不思議な名無しさん :2016年09月09日 22:00 ID:ugfKmutyO*
小さい円だけだぞ
21  不思議な名無しさん :2016年09月09日 22:04 ID:0fSKfJKS0*
言ってることが全然理解できない…
22  不思議な名無しさん :2016年09月09日 22:12 ID:oR.4NU5B0*
おもしろい発想だがたしかに外側はまるくはなっていないんだな
馬鹿にされる結果になってしまって残念だ
もう、何もやる気がしない
23  不思議な名無しさん :2016年09月09日 22:12 ID:6NTlPD8O0*
確かに円は2次元面の上で「ある点(いわゆる中心)から等距離の点の集まり」と決められている。
しかし2次元面というのは平面に限ってはいない
地球の表面のように曲がった面の上で円を描くことも可能だ
24  不思議な名無しさん :2016年09月09日 22:16 ID:6NTlPD8O0*
スレタイへの回答だが、

「そうです。小さな半径の円を描くと同時に、中心が地球の反対側にあるような大きな半径の円を描いていることになります。」

となる。
ちなみに地球表面のような曲がった面で考える場合、半径が大きくなればなるほど円周が大きくなるわけではないというのもおもしろいポイントだね
25  不思議な名無しさん :2016年09月09日 22:23 ID:1MUy17Kl0*
ウィキペディアには、ユークリッド平面上でって書いてあったぞ

「それは円ではない」

が答えなんじゃね?
26  不思議な名無しさん :2016年09月09日 22:24 ID:HzSDQMVR0*
自転公転を考慮すると...って話かと思ったが違った
27  不思議な名無しさん :2016年09月09日 22:36 ID:Nd7VSeGI0*
※25
実世界はユークリッド幾何学的空間ではないから、それは意味のない指摘だぞ
重力で空間は微小ながら常に歪んでいるし、1は地面に円を書いてるからユークリッド幾何学の2次元空間ではない
28  不思議な名無しさん :2016年09月09日 22:41 ID:zJ3APf.z0*
馬鹿と天才は紙一重っていうがこれは馬鹿のほうかな
29  不思議な名無しさん :2016年09月09日 22:48 ID:.b98tmM00*
中学ん時に習った正距方位図を思い出した
30  不思議な名無しさん :2016年09月09日 22:56 ID:1MUy17Kl0*
※27

実世界との一致性を極限まで求めたら線なんてものは存在しないし
地面がユークリッド平面でないから1が円と認識したのは数学的には円でないと俺は言ってるんだが
31  不思議な名無しさん :2016年09月09日 23:01 ID:Dqo2ypu70*
いや普通にそこに書いたとこだけだろ。バカなの?頭良いと思い込みたい奴が考えてそうなことだな
32  不思議な名無しさん :2016年09月09日 23:09 ID:mRH8IMr.0*
たわいない話であっても特に理解し辛いところも無いと思ったが、※を読むと何か本当に >>59 の言うように理解しあえない感じだな。>>1 は空間の中の円の話しはしていなくて、球面上の図形の話ししかしていないぞ。
33  不思議な名無しさん :2016年09月09日 23:15 ID:AJK2E6Ee0*
円である(前提として平面世界が球体状に閉じている)
円の定義は平面上のある点から同一距離にある点の集合であるため
地点Aを中心とする円Aは地点Bから同一距離にある点の集合でもあり
円A線上からの距離が点A≠Bなら大きさの違う二つの円を同時に描くことになる

円でない(円は3次元上の存在ではない)
平面は無限に広がる空間でありそれは完全な平面であることが前提であるため
地点Aを中心とした円Aを描いた際には地球上のような曲面は前提外のことであるため、円は一つしか存在しない。

34  不思議な名無しさん :2016年09月09日 23:27 ID:sztsAbjZ0*
定義による。
完結した球面を二次元世界ととらえるのであれば、大きな円と同義。

でも、イメージとしては、地球上にある概念としての地面に書かれた円は
広げていくと、球体に点で接しているだけの外接平面の円になると思う。
35  不思議な名無しさん :2016年09月09日 23:33 ID:1MUy17Kl0*
※33

前半
「平面上のある点から同一距離にある点の集合である」が円の定義だとすれば、中心・半径を2つ設定できるかもしれないが、1つの円はただ1つだろ
36  不思議な名無しさん :2016年09月09日 23:48 ID:bCbUj3UL0*
書いた長さ(円周)から見て、大きな円とは言えないんじゃね
37  不思議な名無しさん :2016年09月09日 23:48 ID:AJK2E6Ee0*
※35
なぜ中心からの距離が定義になっているのに
中心位置とその距離が違って同じ円になるのよ
円の定義が中心点からの同一距離の点の集合、つまり中心点が無ければ円ではない
また、中心点から同一距離でない点の集合は円ではない
従って半径と中心点が二つ設定できる時点で円は二つ存在する。
点Aを中心とする円Aは点Bを中心とする円Bと同一位置に存在するため
一つの円を描くことで二つの円を表すことにつながるっていうのがこの議題
二つの円が同一位置に存在するため視覚的に線は一つしか存在しない
38  不思議な名無しさん :2016年09月09日 23:51 ID:21wO.OxD0*
俺も真っ先に森博嗣思い出したわ笑わない数学者のラスト
君は円の内側に立ってるか外側に立ってるかってやつ
39  不思議な名無しさん :2016年09月09日 23:51 ID:JbP29sk90*
ヒモの片方を固定して、もう片方にペンをつけて、ヒモをピンと張ったまま、ある面にペンで線を描くと円が描ける。
そのヒモが地球の表面をたどって北極から南極まで届くくらいの長さだったら…
ってことだと解釈。
40  不思議な名無しさん :2016年09月09日 23:52 ID:vdLnzTB.0*
自分のいる場所から半径6378136mの円を描いてください
って描いてみたら地球の反対側に半径1mの円のしかならなかったって話だろ

ちなみに半径637838mの円を描いても同じ円が出来上がる
41  不思議な名無しさん :2016年09月09日 23:59 ID:2IXs208I0*
相撲の場合、土俵の外側=土俵の内側ってことになるから意味分からなくならね?
42  不思議な名無しさん :2016年09月09日 23:59 ID:yo6thnM80*
なんでみんなそんなに頭良いんだ
43  不思議な名無しさん :2016年09月09日 23:59 ID:uSAxvLe.0*
このスレで一番の馬鹿って※31だと思う
机上の空論にその否定の仕方って
44  不思議な名無しさん :2016年09月10日 00:05 ID:TY2zv4ye0*
言い方が違うと言うか
自分から地球の真裏にめがけて小さな円を描く

地球の真裏まで届く長くて大きなコンパスを使って
小さな円を描く

決して大きな円を描くのではなく
大きなコンパスを使うだけのこと
45  不思議な名無しさん :2016年09月10日 00:05 ID:mErypBDt0*
数学は計算するものだと思ってる人には難しいだろうね。
46  不思議な名無しさん :2016年09月10日 00:12 ID:NTZccpaz0*
※40でなんとなく理解した
47  不思議な名無しさん :2016年09月10日 00:14 ID:Z5C831eC0*
※41
「土俵の外に出たら負け」というルールを
「土俵の内外を分ける境界線をまたいだら負け」にすればOK
48  不思議な名無しさん :2016年09月10日 00:18 ID:HPIZtrs50*
じゃあ表面の場合は地球にかける円の最大は赤道みたいに地球を半分にした時の円ってこと?
49  不思議な名無しさん :2016年09月10日 00:31 ID:s32FQUyU0*
※37

例えばxy平面上で
「原点Oからの距離が1である点の集合」

「x^2+y^2=1を満たす点(x,y)の集合」
は等しい
つまり、定義は同値変形できる

その例でも、定義が違っても結局2つの円は同じ点の集合を表しているんだから、同じ円を表しているんじゃないのか?
50  不思議な名無しさん :2016年09月10日 00:59 ID:Z5C831eC0*
※48
その通り
数学の本だと、”大円”と言う名前で呼ばれているのがそれ
51  不思議な名無しさん :2016年09月10日 01:01 ID:koFL1DSl0*
良かった・・・俺と同じ感覚持っている人達がいて、
量子力学も相対性理論も、このスレの概念で集約できる。
52  不思議な名無しさん :2016年09月10日 01:38 ID:gNdSxHEL0*
こういうの面白いな
円柱を輪切りにするような線を引くと
ある人には円に見えて、ある人には直線に見えるんだな
円に見えるってのはちと無理があるかもしれないけど
53  不思議な名無しさん :2016年09月10日 02:04 ID:waV8jv3kO*
意味がわからない
本当に
意味がわからない
54  不思議な名無しさん :2016年09月10日 02:30 ID:ZcWn97m50*
※53
円(二次元)は境界で
ちっちゃい半球(三次元⇒丸いっちゃー丸い)とでっかい半球(三次元⇒丸いっちゃー丸い)。
こんな感じでしょうか。

※49
空間(平面)のゆがみまで考慮するとどんどん面白くなりそうですね。
55  不思議な名無しさん :2016年09月10日 02:38 ID:E3iEcwyI0*
おお、何だおまえら何で話しが通じてるんだ
分かってないオレが頭悪いのは何となく伝わるけど、さっぱり理解できない
地面に書いた円は円だろ、反対から見たら円になってないだろ何がどう変わるってんだ
56  不思議な名無しさん :2016年09月10日 03:00 ID:waV8jv3kO*
レスと※欄の数式やら図形の話しやらはちんぷんかんぷんだけど何となくわかった気がする

壁を殴ったら僅かな凹みができるだけだけど壁一枚分張り替えなきゃいけない的な
57  不思議な名無しさん :2016年09月10日 03:15 ID:CBkVFl.90*
球体の表面に描いた円の話だと思う

「地球の赤道に沿って円を描いた場合、この円の中心は北極点でもあり南極点でもある」
↑これならイメージしやすくない?

後はこの円を北極点側にズラしていくと北極点側から見ると円は小さくなっていく
同時に南極点側から見ると円は大きくなっていく

こう考えれば、「小さい円を描くと、同時に大きい円を描いている」も納得できないかな?
58  不思議な名無しさん :2016年09月10日 03:31 ID:eLzxCZ8S0*
円を書いたらブラジルまで貫通してすごい大きい円になると意味かと思った(小並
59  不思議な名無しさん :2016年09月10日 03:41 ID:waV8jv3kO*
※57
お前の説明が一番分かりやすい
60  不思議な名無しさん :2016年09月10日 04:08 ID:PpCUDpwx0*
直径10cm円は絶対的に直径10cmの円でしかない

「頭が廻る」と「頭が切れる」は別物
の証左だな
61  不思議な名無しさん :2016年09月10日 04:18 ID:77dhcM7u0*
表面積くん頭固すぎワロタ
62  不思議な名無しさん :2016年09月10日 06:00 ID:Pvorbv2n0*
※57
なぜ大きい円と言えるのかがわからないんだわ。
ガラスの球体にマジックで円を描きそれに沿って切る。
ガラスの大きい方と小さいほうができるが、決してマジックで書いた
円が大きくなったり小さくなったりするわけではないじゃない。
63  不思議な名無しさん :2016年09月10日 06:25 ID:AobUFFC.O*
意味は分かるんだけど、こういう話見るたび具合悪くなるのはやはり文系だからなのか
64  不思議な名無しさん :2016年09月10日 06:33 ID:eGBy0p.b0*
※62
あなたは >>59 の言う、「ボールの表面と考えてるやつ」ではなく「ボールの断面と考えてるやつ」になってしまっているのです。
>>1 は球面という2次元世界の中だけで図形の話をしているのです。
大きい方の円の半径は地球の直径より少し短い長さではなく、地球半周(2万キロ)より少し短い長さです。

最初 >>1 を見た時は「俺は地球を持ち上げられるぞ」と言って逆立ちする話と同レベルの、取るに足らないすぐに流す話だと思ったんだが、案外受け入れられないものなんだなあ。
65  不思議な名無しさん :2016年09月10日 06:38 ID:UfN0jID20*
今自分のいる地点と、反対側の地点から見ると違うって話なんだろうけど反対側からでも円の大きさは同じにしかならないだろ
66  不思議な名無しさん :2016年09月10日 07:32 ID:imP2QBgG0*
いくら読んでも意味がわからん
円の外側をひっくり返したところで円じゃないし、意味がわからん
67  不思議な名無しさん :2016年09月10日 07:41 ID:FQDvYuof0*
結局30が正しいんだよな?
68  不思議な名無しさん :2016年09月10日 07:44 ID:Pvorbv2n0*
※64
うーん…納得いかない。
円周までの長さは長いけど、円周の長さは同じですよね?
腕の長い人と短い人が同じサイズの円を描いて、
腕の長い人が大きい円と言っているように聞こえるのですが…

数学的にはそれを「大きい円」というのかな?
69  不思議な名無しさん :2016年09月10日 08:09 ID:s32FQUyU0*
※68
横から

wikiの定義に従う場合
「数学において、円とは、平面(2次元ユークリッド空間)上の、ある点 O からの距離が等しい点の集合でできる曲線のことをいう」
つまり、1の言っている「円」なるものは数学的な円ではない

定義を拡張して
二次元ユークリッド空間→一般の平面
とする場合
数学的に円はあくまで円周だから、68の見解が正しい

円の大きさは違う派は、円を円盤と捉えてしまっている
70  不思議な名無しさん :2016年09月10日 08:52 ID:Pvorbv2n0*
ああ、なるほど。
>>1の言ってる「円」をどう定義するかの違いなのか。納得。
ただ、その説明に「円」が使われてるからややこしくなってる感じw
大きい円盤と小さい円盤。これならわかる。
71  不思議な名無しさん :2016年09月10日 09:05 ID:ZZYJNrw10*
つまり…どういうことだってばよ?
72  不思議な名無しさん :2016年09月10日 09:10 ID:eGBy0p.b0*
大きな円、じゃなくて、半径の大きな円と言えば良かったんだな。確かに円周の長さは同じだね。
73  不思議な名無しさん :2016年09月10日 09:27 ID:xtJSDmRP0*
そもそも地球は球じゃなくてダルマ型の惑星だから「反対側」がない。
74  不思議な名無しさん :2016年09月10日 09:34 ID:O8K6YQMA0*
宇宙人がふらふらっとやって来て、縄跳び程度のヒモを出して
「お願いです、このヒモで囲った土地だけでいいので僕たちに下さい」
と言われても油断してはいけないってことだな
75  不思議な名無しさん :2016年09月10日 09:44 ID:v.DogsIf0*
黄色い線の内側にお下がりください
はあの塗ってある部分に爪先立ちで立ってる
おじいちゃんがいたとか、、、
76  不思議な名無しさん :2016年09月10日 09:48 ID:eGBy0p.b0*
※74
なるほど、話の面白さには円が正確な図形である必要なんか全然無いから、そういう話の方が良かったんだな。
77  不思議な名無しさん :2016年09月10日 10:33 ID:nE4cMMh70*
円周率って習わなかったか・・・
円の直径×約3.14=円周の長さ

になるわけ。だから小さい円を書いたら
地球の逆から見て大きい円、なんて屁理屈は決して通らないわけ
円にはならないんだよ

はい論破!
78  不思議な名無しさん :2016年09月10日 10:55 ID:XW8BUCLs0*
※77
それは円周の長さを求めているだけでしょ?しかも二次元平面での話しだし
なんつうかみんな頭硬すぎ
79  不思議な名無しさん :2016年09月10日 11:07 ID:hB6KafVO0*
コメント欄に魔方陣グルグルが出てて安心した
80  不思議な名無しさん :2016年09月10日 11:12 ID:uz1coppJ0*
最初何言ってるかわからなかったけど意味がわかったときのスッキリ感がスゴイwwwwwwwwwwww
81  不思議な名無しさん :2016年09月10日 11:14 ID:tn.E7AH70*
>>47
でようやくわかった
みんな頭良いな
82  不思議な名無しさん :2016年09月10日 11:14 ID:1BFtNOne0*
※78
2次元平面というよりユークリッド平面じゃないか?
83  不思議な名無しさん :2016年09月10日 11:33 ID:qEnTAtyE0*
北極点を中心にした正距方位図法で南極点に円を描くとばかでかくなるよ。
84  不思議な名無しさん :2016年09月10日 11:38 ID:waV8jv3kO*
※63
文系も理系も1の問いに対して十人十色の答えがあるのは一緒だよ
出し渋りは余計に頭を痛めるよ
85  不思議な名無しさん :2016年09月10日 11:38 ID:IQ4KeXH20*
わかったような気になってたけど
ID:M4z6tc3Qdの疑問に答えられないわ
86  不思議な名無しさん :2016年09月10日 11:38 ID:qEnTAtyE0*
メルカトル図法だと北極点もしくは南極点で円を描くと赤道と同じ長さの直線になるよ。
87  不思議な名無しさん :2016年09月10日 14:00 ID:4D602epi0*
ぶっちゃけ地球は楕円形だから綺麗な円にはならんけどな
88  不思議な名無しさん :2016年09月10日 14:06 ID:43Eyg1NB0*
面白い考えだね、自分には思いつかいなかった
こういう思考ができる人って素直にスゴイと思う
89  不思議な名無しさん :2016年09月10日 14:45 ID:CBHUUery0*
遊びとわかった上で…
国際法的解釈:描いた円を国境線とすると、広い方の国は「わが国は広大な円形の国土を持っている」と言えるのではないか。
90  不思議な名無しさん :2016年09月10日 15:01 ID:NQezaCC30*
それ言い出したら、そもそも最初に描いた「円」は円の要素を満たしてるのか?という話になると思うけど
91  不思議な名無しさん :2016年09月10日 17:00 ID:KkEJRVQ90*
円じゃなくて球じゃんって言ってる奴いるけど、非ユークリッド幾何学的に考えるとちゃんとした円なんだよなあ
92  不思議な名無しさん :2016年09月10日 17:11 ID:xzdbo.RU0*
皆どのレベルで議論してるのか不明過ぎて安易にコメント出来ないわ
93  不思議な名無しさん :2016年09月10日 17:20 ID:tfZ1M3vF0*
お前らアタマいいのにニートなんだな
94  不思議な名無しさん :2016年09月10日 18:47 ID:PbOqGG1c0*
勉強する時間は働いてる奴等の倍以上持ってるからな
95  不思議な名無しさん :2016年09月10日 23:30 ID:bBdlFSKZ0*
つまり100m先のコンビニに行くということは
4万km-100m移動したのと同じってことか
96  不思議な名無しさん :2016年09月11日 01:01 ID:RVWgWZAD0*
>>47の半径4万km-10cmの円は間違いじゃない?正しくは半径2万km-10cmの円のはず
それと、球面幾何学で考えると半径が違うのに円周が同じになる円は成り立つね

半径Rの2次元球面に描いた半径rの円の円周は以下のようになる

2πR*sin(r/R) [0≦r≦πR]

例えば、r=πR/4とr=3πR/4の円周は両方とも同じになるね
97  不思議な名無しさん :2016年09月11日 01:08 ID:lM9GeHc80*
ありきたりやな
条件をどうするかで変わるだけだ.
98  不思議な名無しさん :2016年09月11日 01:08 ID:RVWgWZAD0*
※96
「半径Rの2次元球面に描いた」というより、「半径Rの球体の表面に描いた」と言ったほうが分かりやすいか・・・
99  不思議な名無しさん :2016年09月11日 05:34 ID:1ioqHkGV0*
同じような事考えた事あったけど
非ユークリッド幾何学と言うのか。
100  不思議な名無しさん :2016年09月11日 07:53 ID:05YEDfFR0*
何当たり前のこと言って威張ってんだコイツら?
101  不思議な名無しさん :2016年09月11日 10:05 ID:Db9rCrHe0*
※74でやっと言ってる意味が分かった。なるほどね!
102  不思議な名無しさん :2016年09月11日 10:15 ID:lgXm.U5o0*
文系だけど5秒で理解した
103  不思議な名無しさん :2016年09月11日 11:59 ID:FpoATGti0*
※100
地面に描くというのを
面ととったか地球という球体でとったで解釈が変わる
そして円を二次元的に考えた結果、理解出来なかった人が多数いるのだ。

地球儀みれば一発なんだけどね。
104  不思議な名無しさん :2016年09月11日 12:11 ID:Gv51BW3B0*
※103
球面に書いても、円を円周と捉えるか円板と捉えるかで解釈が変わるんだぜ
105  不思議な名無しさん :2016年09月11日 14:13 ID:n406YdLH0*
球面を覆う伸縮自在のスライムみたいなのイメージしたら分かったわ
中心を球体の反対側に置くかで全然外周までの距離が変わっちゃうもんな
106  不思議な名無しさん :2016年09月11日 16:24 ID:nfU6QjSe0*
テニスボールを切断するじゃん?
普通は切断面の周を見て、円だと判断すんじゃん?
でも1はバカっつーか一種の屁理屈好きなアレだから、切りとったテニスボールの表面積部分を見て、湾曲しとる!つまり円じゃない(賢いキリリッしてんのよ。
知らんけど
107  不思議な名無しさん :2016年09月12日 01:27 ID:CZD5..dq0*
円というのは、円周という「線」のこと以上でも以下でもない
その円の内部として球体表面を考えるか、地球を切断したときに現れる円板を考えるかの違いだな
地球表面という曲がった2次元空間を考えるときは地球の内部は不可侵だと想像できないのだろうね
内部に入れるのなら3次元になってしまうのに
108  不思議な名無しさん :2016年09月12日 03:48 ID:MTjA9NJg0*
まったくわからない
グルグルがコメ欄に書かれてて安心したからいいや
109  不思議な名無しさん :2016年09月12日 10:11 ID:VOAvB6OkO*
◎←コレの内側の円と外側の円の円周の長さは同じ
110  不思議な名無しさん :2016年09月16日 02:34 ID:DiDcLcaE0*
※107
だから二次元じゃなくて三次元のはなしをしてるんじゃん頭硬すぎ
111  不思議な名無しさん :2016年09月17日 01:33 ID:hTnikfp00*
※110
少なくともスレ主は2次元の話をしてるんだが
112  不思議な名無しさん :2016年09月25日 21:00 ID:ZKC4rjFo0*
空間の曲率の話をしたいんじゃなかったのかな
113  不思議な名無しさん :2016年10月03日 01:04 ID:iTJSsTPr0*
宇宙人がふらふらっとやって来て、縄跳び程度のヒモを出して
「お願いです、このヒモで囲った土地だけでいいので僕たちに下さい」
と言われても油断してはいけないってことだな

これが一番わかりやすい。
別に円じゃなくたっていい。

↑は理解してるが円の定義について異議があるって人は、非ユークリッド幾何学でググるべし。
114  不思議な名無しさん :2016年10月05日 16:05 ID:yfwAn8Ry0*
>>47読んでやっと理解した
115  不思議な名無しさん :2016年10月06日 01:44 ID:oGEE7Ja.0*
色んなスレッド見てきたがここまで理解できないのは初めてだ
116  不思議な名無しさん :2016年12月12日 11:47 ID:flt3l.MY0*
なんだっけ、これ森博嗣の作品で見たわ
117  不思議な名無しさん :2016年12月30日 17:35 ID:aF2pyV5x0*
君が決めるんだ
118  不思議な名無しさん :2017年01月01日 22:45 ID:dUiPn7K60*
算数の割り算で全てを諦めた俺が頑張って理解しようとしてんだが…


地面に小さい円を書いたと同時に大きい円を書いてる。
「同時に」だよな?それなら「ズラす」のは違わないか?同時にならないよな…??

視点を変えて、宇宙のからみたら、自分が書いた円とともに地球も丸(円)じゃよ、という事じゃなくて?

◎ (´・ω・` )なるほど丸い。
119  不思議な名無しさん :2017年01月01日 22:48 ID:dUiPn7K60*
最初の方の>>28でアンサーなの…?
アンサーなのに理系ニキが難しいこと言ってるってスレなの…?
僕はもうダメだ…(´q`)
120  不思議な名無しさん :2017年01月11日 12:18 ID:GlFmzNTW0*
📌ーー糸ーー🖋 ペンと画鋲を糸の両端に付けて地球儀にぶっ刺して地球儀の上に円を描くんだよ。
より大きい円を描こうとして糸を長くしていくと刺した地点の反対側に来た時、小さな円が出来上がると言うお話。
121  不思議な名無しさん :2017年01月28日 06:03 ID:hpCcZTst0*
『円を描く』ではなく『領域の境界線を描く』にすれば、すんなり受け入れられるんだけどな
でもそれじゃスレが伸びないか
122  不思議な名無しさん :2017年05月08日 14:52 ID:Hq8m7iRH0*
球体に円を描いた時、断面でなく、表面積で図形と捉えれば、それはパックマンみたいな形に成るわけよ。
わかった?
123  不思議な名無しさん :2017年05月08日 18:04 ID:ctAndQE40*
言いたいことは分かるが円のお話してないよね

 
 
上部に戻る

トップページに戻る